78 research outputs found

    Daily-Life Monitoring of Stroke Survivors Motor Performance: The INTERACTION Sensing System

    Get PDF
    The objective of the INTERACTION Eu project is to develop and validate an unobtrusive and modular system for monitoring daily life activities, physical interactions with the environment and for training upper and lower extremity motor function in stroke subjects. This paper describes the development and preliminary testing of the project sensing platform made of sensing shirt, trousers, gloves and shoes. Modular prototypes were designed and built considering the minimal set of inertial, force and textile sensors that may enable an efficient monitoring of stroke patients. The single sensing elements are described and the results of their preliminary lab-level testing are reported

    Towards the development of an EIT-based stretchable sensor for multi-touch industrial human-computer interaction systems

    Get PDF
    In human-computer interaction studies, an interaction is often considered as a kind of information or discrete internal states of an individual that can be transmitted in a loss-free manner from people to computing interfaces (or robotic interfaces) and vice-versa. This project aims to investigate processes capable of communicating and cooperating by adjusting their schedules to match the evolving execution circumstances, in a way that maximise the quality of their joint activities. By enabling human-computer interactions, the process will emerge as a framework based on the concept of expectancy, demand, and need of the human and computer together, for understanding the interplay between people and computers. The idea of this work is to utilise touch feedback from humans as a channel for communication thanks to an artificial sensitive skin made of a thin, flexible, and stretchable material acting as transducer. As a proof of concept, we demonstrate that the first prototype of our artificial sensitive skin can detect surface contacts and show their locations with an image reconstructing the internal electrical conductivity of the sensor

    Soft capacitor fibers using conductive polymers for electronic textiles

    Full text link
    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its crossection the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometres of fibers can be obtained from a single preform with fiber diameters ranging between 500um -1000um. A typical measured capacitance of our fibers is 60-100 nF/m and it is independent of the fiber diameter. For comparison, a coaxial cable of the comparable dimensions would have only ~0.06nF/m capacitance. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kOhm/L, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes, and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage

    Effect of mechanical preconditioning on the electrical properties of knitted conductive textiles during cyclic loading

    Get PDF
    This paper presents, for the first time, the electrical response of knitted conductive fabrics to a considerable number of cycles of deformation in view of their use as wearable sensors. The changes in the electrical properties of four knitted conductive textiles, made of 20% stainless steel and 80% polyester fibers, were studied during unidirectional elongation in an Instron machine. Two tests sessions of 250 stretch–recovery cycles were conducted for each sample at two elongation rates (9.6 and 12 mm/s) and at three constant currents (1, 3 and 6 mA). The first session assessed the effects of an extended cyclic mechanical loading (preconditioning) on the electrical properties, especially on the electrical stabilization. The second session, which followed after a 5 minute interval under identical conditions, investigated whether the stabilization and repeatability of the electrical features were maintained after rest. The influence of current and elongation rate on the resistance measurements was also analyzed. In particular, the presence of a semiconducting behavior of the stainless steel fibers was proved by means of different test currents. Lastly, the article shows the time-dependence of the fabrics by means of hysteresis graphs and their non-linear behavior thanks to a time–frequency analysis. All knit patterns exhibited interesting changes in electrical properties as a result of mechanical preconditioning and extended use. For instance, the gauge factor, which indicates the sensitivity of the fabric sensor, varied considerably with the number of cycles, being up to 20 times smaller than that measured using low cycle number protocols

    Daily-life tele-monitoring of motor performance in stroke survivors

    Get PDF
    The objective of the EU project INTERACTION is to develop an unobtrusive and modular sensing system for objective monitoring of daily-life motor performance of stroke survivors. This will enable clinical professionals to advise their patients about their continued daily-life activity profile and home training, and evaluate and optimize rehabilitation programs.A modular textile-integrated sensing system was developed and performance and capacity measures were proposed and clinically tested in stroke subject.Telemonitoring facilities were developed and tested. In the last stage of the project, the system will be tested during daily-life

    INTERACTION, Training and monitoring of daily-life physical interaction with the environment after stroke

    Get PDF
    The objective of the recently started EU project INTERACTION is to develop an unobtrusive and modular system for monitoring the quality of daily-life activities of stroke subjects involving the upper and lower limbs

    Optimal exploratory paths for a mobile rover

    No full text
    We consider the problem of maximizing the localization accuracy of a mobile vehicle, based on triangulation measurements derived from optical data. The problem is intrinsically nonlinear, as the linear approximation of the system is not observable. This implies that the choice of inputs (i.e., the path followed) may affect the quality of observations made, and ultimately the localization accuracy. We consider the problem of finding the most informative exploratory path of the given length for a rover (modeled as a point in the plane) with optical triangulation information

    Textile-based electrogoniometers for wearable posture and gesture capture systems

    No full text
    This paper introduces a method for detecting joint angles by using piezoresistive strain sensitive materials, as carbon loaded rubbers are. Materials used can be screen-printed onto fabrics to provide garments with a sensing apparatus able to reconstruct human postures and gestures. The main differences between this approach and the previous ones, and the core of this work, is the rigorous proof that for small local curvatures of the layers the constituting electrogoniometers, the resistance depends only on the total curvature of the layers and not on the particular form that the sensor keeps in adherence with the human body. In this paper, we show that the hypothesis of small local curvature does not severely restrict the set of angles which can be detected
    • …
    corecore